
Developer strategies in smartphone application markets

Dmitry Sharapov

Imperial College Business School

Abstract

This exploratory study uses interviews with 29 developer teams conducted during the

development process of a focal mobile application to identify four strategies forming the

basis of their app’s intended competitive advantage. I then use objective data from secondary

sources to examine which combinations of these strategies, along with the resources and

capabilities of the developer team, led to timely app release, high app ratings and high app

downloads. Preliminary results suggest that the emphasis placed by many developer teams on

complementary assets as a foundation for success is misplaced. While owned complementary

assets are associated with timely release, accessed complementary assets are associated with

major delays in release or even outright failure. Neither owned nor accessed complementary

assets appear to be associated with high rating or high downloads.

Introduction

A large and increasing share of global economic activity takes place in organizational

ecosystems based around platforms through which distinct groups conduct transactions

(Eisenmann, 2007). Examples of such platforms include newspapers, through which

advertisers reach readers, and mobile device application markets, such as the Apple App

Store, from which device users download third-party applications.

Both platform-leading firms and others operating in an organizational ecosystem

based around a platform face distinctive management challenges.

The performance of firms taking a leading role in an ecosystem depends not only on

how they deal with internal innovation challenges, but also on the challenges facing their

suppliers and firms that provide complementary products (complementors), with the

challenges facing these two groups having different effects on the performance of the focal

firm. While much attention has been paid to approaches for co-operating with suppliers to

overcome such challenges, less is known about how firms can effectively assist innovation

efforts on the complementor side (Adner & Kapoor, 2010). Ecosystems leaders must also

consider direct and indirect network effects when developing strategies to attract distinct

groups of users to the ecosystem, and must be wary of threats of envelopment by other

platforms (Eisenmann, Parker, & Van Alstyne, 2011). Additionally, platform leader

governance choices and strategies towards competition and co-operation with different

complementors have wide-ranging effects on innovation, and on the creation and capture of

value within the ecosystem (Gawer & Cusumano, 2002; Iansiti & Levein, 2004; Casadesus-

Masanell & Yoffie, 2007).

Complementors, on the other hand, must make choices regarding which platform(s) to

make products for, taking into account a number of considerations, including platform

popularity, competition, and technology (Venkatraman & Lee, 2004). They must also plan for

the possibility that the platform leader might choose to enter into their product space should

their offering be successful (Gawer & Cusumano, 2002; Iansiti & Levein, 2004).

The existing literature has significantly advanced our understanding of competition

and innovation in platform-based markets. However, the focus of extant research has been

mostly on platform leader strategies, with less attention devoted to the challenges facing

complementors. While some recent work has improved our understanding of complementor

strategies using data on the performance of applications in the Apple’s smartphone ecosystem

(Yin et al., 2014), what we know about complementor strategies comes largely from single

case studies, which provide detailed and highly contextualized evidence which is, however,

limited in its empirical generalizability. As complementor input is crucial for ecosystem

success, an improved understanding of complementor strategy in such contexts would add to

academic knowledge about ecosystem competition, while also being highly relevant for

practice.

This report analyzes 29 cases of apps created by smartphone application developers

who were selected to receive grants and training from AppCampus, an accelerator funded by

Microsoft and Nokia and managed by Aalto University in Finland. In the course of a number

of visits to residential training camps run by the accelerator for selected teams from its

portfolio, I conducted face-to-face interviews with the developers while development of the

focal app was still ongoing, collected information from the accelerator’s database containing

records of the app’s submission and development process to supplement and triangulate my

understanding of these cases, and gained access to rich, objective measures of the

performance of the apps post-release. In order to understand the strategies pursued by these

complementors and to evaluate their effectiveness on app performance, I use fuzzy-set

qualitative comparative analysis (fsQCA) methods (Ragin, 2008; Fiss, 2011).

The results show that a number of configurations of developer resources and

capabilities and strategies result in timely app release, high app ratings, and high app

downloads.

Data and method

Research setting

AppCampus was a three-year accelerator created in May 2012 through a collaboration

between Microsoft, Nokia, and Aalto University in Finland. While Microsoft and Nokia each

provided €9 million in funding, Aalto University agreed to manage the accelerator and to

cover its operating costs. The purpose of AppCampus was to attract novel, high quality apps

to the Windows Phone platform by offering grants for app development in exchange for a

temporary exclusivity agreement (the duration of the exclusivity period was reduced from 90

to 30 days towards the end of AppCampus’ first year of operation). By the end of the

programme in May 2015, AppCampus had received submissions of over 4,300 app ideas

from developer teams based in over 100 countries and had invested approximately €10

million in over 300 entrepreneurial teams through grants of €20,000, €50,000 or €70,000.

The selection process for submitted ideas was rigorous, with only submissions that

were judged to have the potential to meet novelty and quality standards chosen for funding.

The acceptance rate of less than 10% illustrates this selectivity. In the second year of its

operation, AppCampus started to offer residential training camps to selected teams from its

portfolio. These training camps consisted of a combination of lectures, coaching sessions and

networking events, covering a variety of topics related to mobile application development

and marketing. The teams interviewed for this research took part in one of three two-week

training camps that took place in April 2014, September 2014 and January 2015. The cases

considered in this analysis are therefore not representative of the population of smartphone

applications. With hundreds of thousands of applications populating mobile app stores and

very few of these achieving significant downloads or revenues, I chose to focus on app ideas

that should have a better than average chance at being successful, those that had passed the

AppCampus selection process and those whose developers had also received two weeks

training from AppCampus.
1

Data

1
 On average, AppCampus-funded apps were of significantly higher quality than the Windows Phone store

average, getting seven times more downloads, twice the revenue, and higher user ratings.

During these three training camps, I was present at the AppCampus office and approached all

participating developer teams for interviews. This resulted in 46 interviews, excluding three

developers who were participating for only part of their training camp. The interviews were

semi-structured, covering a range of topics including the development team’s composition

and experience, and their plans for the AppCampus-funded app that they were developing at

the time. The interviews were conducted with one or two members of the development team,

their length ranged from 17 to 78 minutes, and all interviews were recorded and transcribed.

Of the 46 cases, 17 had already released their app by the time of the interview. These cases

were excluded from the analysis due to concerns about the initial performance of their apps

impacting on their ability to recall the development process and strategy of their app in an

unbiased manner, leaving 29 cases.

 The information collected in the course of the interviews was later supplemented and

triangulated using records regarding each team, their app, and the AppCampus selection and

quality assurance process from the AppCampus customer relationship management (CRM)

system. This included information about submitted by the developers in the course of

applying for a grant from AppCampus, covering the composition and track record of the

development team and a description of the proposed app and how it differs from and/or

improves on apps already existing in the market, and notes made by AppCampus staff while

evaluating the submission and following later communication with teams selected for grants.

 Finally, I gained access to longitudinal, objective data on the performance of

AppCampus apps that were released on the Windows Phone store to evaluate the

performance of the released apps and to further triangulate some aspects of the cases.

Method

Combining evidence from interviews, the AppCampus CRM system, and Windows Phone

store performance data, I built 29 case histories capturing aspects of the app that the

developer team highlighted as giving it an advantage in comparison to other apps on the

Windows Phone store, developer team characteristics, the type of app the team were

developing, their plans for the app’s release, and the eventual performance of the app.

To identify the conditions associated with good and poor app performance, I used

fuzzy-set qualitative comparative analysis (fsQCA). fsQCA uses set theory and Boolean

algebra to map configurations of causal conditions to an outcome which takes the form of a

measure of case membership in an outcome set. Inferences from fsQCA are made on the

basis of subset relations between configurations of causal conditions and an outcome rather

than on the basis of correlations (Ragin, 2008). The goal of fsQCA is therefore the

identification of (combinations of) causal conditions which are necessary and/or sufficient for

an outcome. fsQCA allows the researcher to test hypotheses regarding relationships between

different configurations of causal conditions and an outcome and also provides a means of

testing whether causal conditions are causally core or causally peripheral for the outcome

(Fiss, 2011). This method is also suitable for testing hypotheses of equifinality and causal

asymmetry, which occurs when the absence of a condition associated with a high outcome

does not result in a low outcome (Fiss, 2007). While fsQCA can be fruitfully used following

a deductive approach in the analysis of a large number of cases (e.g., Fiss, 2011), it is well-

suited for elaborating theory using data on a smaller number of cases (Redding & Viterna,

1999).

fsQCA allows for partial set membership, meaning that instead of a case being fully

in or fully out of the set of cases exhibiting a particular explanatory condition (having a set

membership score of 1 or 0), its degree of set membership can be calibrated to represent

meaningful groupings (Ragin, 2008). The explanatory conditions examined in this report are

calibrated to have set membership scores of 0, 0.33, 0.66, and 1, where 0 represents

nonmembership, 0.33 implies that a case is more out of the set than in, 0.66 implies that a

case is more in the set than out of it, and 1 represents full membership in the set.

Set membership of cases in two of the outcome sets was calibrated following the

direct method of calibration (Ragin, 2008) applied to objective Windows Phone store data.

This method of calibration requires the researcher to specify three qualitative anchors used to

rescale the quantitative data into set membership scores. The first anchor is the value of the

variable in question corresponding to full set membership, with cases exhibiting this outcome

given a set membership score of 0.95. The second anchor corresponds to the point at which a

case is considered to cross over from being more out of the set than in it, to more in the set

than out of it. Cases exhibiting this outcome are assigned a membership score of 0.5. The last

anchor is the threshold at which a case is considered to be fully out of the set, with cases

exhibiting this outcome assigned a membership score of 0.05. My calibration of the outcome

and explanatory conditions was based on my in-depth knowledge of the cases and their

context (Rihoux and Ragin, 2008), and is discussed below.

Application performance

Timely release. A basic measure of the performance of a project is whether or not the

development process resulted in the intended output being finished. Furthermore, the

timeliness of delivery, i.e., how close to its estimated completion date the project’s output

was finished, is frequently taken into consideration in project evaluation. In the context of

this study, a timely release means that the app in question was released on the Windows

Phone Store by the target release month given by the developer team during my interview

with them. By the time of the interview, the team had already had multiple interactions with

the quality assurance team of AppCampus and was aware of the quality standards required

for the final version of the app to be accepted by AppCampus as ready for release. I thus

allocated full membership (1) to apps that were released before or during the developer

team’s target release month. Partial membership (0.66) was given to apps that were released

between one and two months after the developer team’s target release month. Apps that were

released three or more months after the developer team’s target release month were allocated

a low degree of membership (0.33). Finally, in four of the cases considered in this study, the

developer team did not release an app. These cases are not members of the set of cases with

timely releases, and are given a set membership score of 0.

 User ratings. An important measure of smartphone app quality is the average rating

that the app receives from those who have downloaded it. Ratings range from 1 (low) to 5

(high). Following the criteria used by AppCampus staff to evaluate the success of the apps in

their portfolio, the raw average ratings were calibrated using the direct method using the

following thresholds: an average rating of 4.25 from ten or more reviews was taken as the

threshold for full set membership (0.95); an average rating of 4.1 from ten or more reviews

was takes as the crossover threshold (0.5); and an average rating of 3.8 or below, or any

average rating given by fewer than 10 reviewers, was taken to be the threshold for non-

membership (0.05). As four of the cases did not result in released apps, the analysis of the

explanatory conditions associated with high user ratings is performed on 25 cases.

 Downloads. The number of downloads received by an app is a key measure of its

success, and is usually highly correlated with the revenues that the app generates for its

developer team. Following the criteria used by AppCampus staff to evaluate the success of

the apps in their portfolio, the raw average weekly download numbers for each app were

calibrated using the direct method using the following thresholds: average weekly downloads

of 5,750 were taken as the threshold for full set membership (0.95); average weekly

downloads of 1,000 were taken as the crossover point (0.50); and average weekly downloads

of 500 were taken as the threshold for nonmembership (0.05). As 3 of the cases considered in

this study released apps during the last week of the AppCampus programme, after which the

Windows Phone store performance data of AppCampus apps was no longer tracked, I

perform the analysis of explanatory conditions leading to downloads for 22 cases.

 While I have access to objective, longitudinal data on the revenue generated by the

apps considered in this study through premium downloads and in-app purchases, 9 of the 22

cases for which I analyze performance in terms of downloads chose to offer their apps for

free and without any in-app purchases. As I do not have data regarding any advertising

revenue generated by the apps, this leaves only 13 cases for which an analysis of explanatory

conditions associated with high revenues can be performed. This small number of cases

severely restricts the number of explanatory conditions that can be considered without

running the risk of over-interpreting limited data (Marx, 2010), so an analysis of this outcome

is left for a subsequent study.

Explanatory conditions

Analysis of my interviews with the developer teams and of the AppCampus CRM records

revealed four recurring bases of competitive advantage that the developer teams believed

their apps to have. While none of the cases were full members of all four sets, most combined

at least partial membership in two or more sets.

 Competing on novelty. A number of developer teams were developing apps that they

considered to be highly novel in terms of a similar app not being available on any smartphone

application market. For example, a developer stated of their app: “I think it should succeed

because it’s different. I think it’s quite unique.” Another developer team said: “To my

knowledge till now, only we are doing this for [our application category].” Talking of how

the idea for their app came about, a developer team said: “We actually realized that there’s

this new market that is still unexplored”. A further case of an app competing on novelty saw

the developer team applying a patent-pending approach to pricing in their business-to-

consumer platform application. All such cases were considered to be fully in the set of cases

competing on novelty (1). A number of cases had developer teams working on apps that

added novel features to or targeted somewhat different target groups from existing

competitors. Such cases were considered to be partially in the set of cases competing on

novelty and were assigned a set membership score of 0.66. Cases in which the proposed app

had a minor degree of novelty that was not much emphasized by the developer team or by

AppCampus staff were assigned a set membership score of 0.33. Finally, cases in which the

app under development was never described as being novel were considered to be fully out of

the set of cases competing on novelty (0).

 Competing on owned complementary assets. Some of the developer teams

interviewed believed that owned complementary assets would give their app an advantage in

the Windows Phone store. For some of the teams the complementary asset in question was an

existing web-based version of the utility app that they were developing for mobile, while for

others it was an existing prequel of the game sequel that they were developing, or a version of

the game that was already released on another platform. For others, the complementary asset

in question was a proprietary software engine or algorithm, or an established community of

users of their previous apps. Cases in which developer teams heavily emphasized substantial

complementary assets as a factor giving their app a competitive advantage were considered to

be fully in the set (1), partial set membership (0.66) was assigned to cases with teams

possessing some complementary assets but not putting much emphasis on their importance, a

low degree of membership (0.33) was allocated to cases in which the development team

possessed minor complementary assets, while nonmembership (0) was given to cases with no

owned complementary assets.

 Competing on accessed complementary assets. Complementary assets that the

developer team did not own but believed it had negotiated access to formed the basis of case

for their app’s prospective competitive advantage in a number of cases. The complementary

assets in question were often intellectual property owned by third parties, while a number of

teams also highlighted their expectation of receiving marketing support from third party

channels, usually based on the team’s positive prior interactions with them. Cases in which

accessed complementary assets were considered to be crucial for the app’s success by the

developer team were assigned full set membership (1), those in which some accessed

complementary assets were mentioned as likely to have a positive impact were considered to

be partially in the set (0.66), a low degree of set membership (0.33) was assigned to cases in

which access to some complementary assets was mentioned in passing, while cases in which

no mention of accessed complementary assets was made were considered to be fully out of

the set (0).

 Competing on execution. Being able to provide a better user experience than rival

apps was mentioned as a basis for their app’s competitive advantage by a number of

developer teams. For game cases, this was often about having high production values, for

example: “The graphics are very hand-crafted and the music is very hand-crafted as well.”

Another developer team described the standout features of their game as: “Nice artwork

throughout it and nice music and sounds, which is what we’ve all focused on as our strong

points within the company”. For utility apps, it was about providing an easier and/or more

reliable way of doing things compared to existing competitors. For example, one developer

team stated: “We studied the market that is there. Competitors? Yes, there were some, but

they weren’t good enough.” Another developer team described their app’s competitors as

“second rate products” before continuing: “We are doing it right. We have the best; it’s easy

to use, it works as you expect.” These and other cases in which developer teams placed major

emphasis on execution as being the basis for their app’s competitive advantage were

considered to be fully in the set (1), those mentioning some aspects of execution as positive

for the app’s competitive performance were assigned a partial set membership score (0.66),

cases in which the developer team made only a passing reference to execution were

considered to be more out of the set than in (0.33), while cases in which no mention of

aspects of the app related to execution of the concept was made were considered to be out of

the set (0).

 A second set of explanatory conditions concerns the resources and capabilities of the

development teams working on the apps. These explanatory conditions include resources

allocated to app development, team mobile development experience and team entrepreneurial

experience.

 Resources allocated to app development. In the course of my interviews with the

developer teams, I was able to get a good understanding of both the duration of the app’s

development to date as well as the number of full-time and part-time people involved in its

development over that period. Taking the app’s Windows Phone release date (or date of

exclusion from AppCampus in the case of unreleased apps) as the development end-point and

counting part-time people as working half the amount that a full-time team member would

work in a given month of development, cases in which teams spent more than 60 man-months

on developing their app or outsourced their app’s development to an external team were

considered to be fully in the set (1), while those who spent between 40 and 60 man-months

on development were assigned partial set membership (0.66). Teams spending between 30

and 39 man-months on development were considered to be mostly out of the set of cases with

large resources allocated to app development (0.33), while teams who received only the

minimum grant from AppCampus (€20,000) and who spent fewer than 30 man-months to

develop, were considered to be completely out of the set (0).

 Team mobile development experience. During my interviews with the developer

teams, I gained a good understanding of the degree to which the team members had a

background in and experience of developing smartphone apps. Teams with developers having

many years of mobile development experience and a large number of previously released

apps were considered to be fully in the set (1), those with several prior app releases and some

years of mobile development experience were assigned partial set membership (0.66), cases

with developer teams who had only limited mobile development experience, releasing one or

two previous apps at most, were considered to be mostly out of the set (0.33), while teams for

whom their AppCampus app would be their first mobile app were considered to be fully out

of the set (0).

 Team entrepreneurial experience. Alongside mobile development experience,

entrepreneurial experience may also contribute to good app performance. Cases in which the

team had successfully operated as a standalone business for a large period of time prior to

developing the focal app and those in which at least one of the full-time team members was a

serial entrepreneur were considered to be fully in the set (1), cases with team members that

had a number of years of entrepreneurial experience in the focal or another company were

assigned partial set membership (0.66), those who had operated as a standalone enterprises

for only a short period of time or who had operated as a one-person business for a number of

years were considered to be mostly out of the set (0.33), while those who only founded their

first company after being selected by AppCampus were considered to be fully out of the set

(0).

 Finally, I consider two explanatory conditions relating to the characteristics of the

market being addressed by the app: whether or not the app in question is a game, and the

degree to which it targets the global Windows Phone market, as opposed to targeting a

narrower geographic region.

 Game. The important distinctions between games and other apps are well accepted by

both practitioners and academics (e.g., Yin et al., 2014). Cases in which the app under

development is a game serving no other purpose than entertainment are considered to be fully

in the set (1). In a number of cases the app under development was primarily focused on the

gaming side, but also contained important educational or utility elements. Such cases were

considered to have partial membership (0.66). Some cases used in-app gamification

mechanisms in the hope of increasing user engagement with the utility app that was the focus

of development. These cases we considered to be more out of than in the set of games (0.33).

Pure utility apps were considered to be completely out of the set (0).

 Targeting global market. The size of the market onto which a product is being

released can be seen as an upper bound on the number of users it can hope to attract. In

addition to deciding whether or not an app should be released on all national Windows Phone

stores worldwide, developers can also choose to localize their app for any number of

languages. Localization often goes beyond simple translation of in-app text to include special

features or notifications customized for each localized country. Cases in which the app was

released globally and was localized for more than three languages were considered to be fully

in the set (1), apps that were released globally and localized for two to three languages were

assigned partial set membership (0.66), cases in which the app was released globally but only

in one language were considered to be more out of the set than in (0.33), while cases in which

the app was released in only a narrow geographical area were taken to be completely out of

the set (0).

Analysis

Following calibration of set membership scores, the next step in performing fsQCA is to

construct a truth table, which lists all possible configurations of explanatory conditions. Any

configurations not associated with any of the cases analyzed were deleted. To identify

configurations consistently associated with the outcome of interest, I then specified a

consistency threshold. Consistency measures the extent to which cases exhibiting a

combination of explanatory conditions also exhibit the outcome (Ragin, 2008). Following

common practice, a consistency threshold of 0.8 was chosen.

The truth table algorithm (Ragin, 2008) was then employed to logically reduce the

observed combinations of explanatory conditions and outcomes to a parsimonious and

intermediate solution using fs/QCA 2.5 software (Ragin et al., 2006). The parsimonious

solution uses only the simplifying assumption arising from the combinations of explanatory

conditions observed in the cases, and contains only the core explanatory conditions that have

the strongest evidence for being associated with the outcome. The intermediate solution,

which contains and extends the parsimonious solution, employs additional counterfactual

analysis to use the researcher’s hypotheses regarding the effect of the presence or absence of

explanatory conditions on the outcome to hypothesize the degree to which some hypothetical

unobserved cases would be associated with the outcome, thus allowing the researcher to

identify explanatory conditions that have some evidence for being linked to the outcome, but

which are more peripheral than the core explanatory conditions (Ragin, 2008; Fiss, 2011).

Results

Timely release

The explanatory conditions considered for explaining timely release include those listed in

the previous section, with the exception of targeting global market, which relates to the size

of market being addressed and which should have little impact on the developer team’s

ability to produce software of the technical standard required for an app to pass AppCampus

quality control.

Table 1 shows the configurations of explanatory conditions associated with timely

release. There are 6 parsimonious and 12 intermediate solutions. The assumptions used for

the counterfactual analysis to arrive at the intermediate solution were that the presence of

resources allocated to app development, team mobile development experience, team

entrepreneurial experience, competing on owned complementary assets and the absence of

competing on accessed complementary assets would be associated with timely release.

Solutions 1 and 2 suggest that a lack of entrepreneurial experience need not prevent

timely release if it is compensated for by either owned complementary assets or by having a

large amount of resources allocated to app development. Solutions 3 and 4 suggest game

development aiming to compete on novelty and utility app development aiming to compete

on owned complementary assets are both associated with timely release. A further path to

timely release appears to be mobile development experience without reliance on either

execution or accessed complementary assets as the bases of competition, as seen in solution

5. Solution 6 suggests that having a large amount of resources allocated to development in the

absence of either owned or accessed complementary assets is a further path to timely release.

Interestingly, it appears that absence of reliance on accessed complementary assets is an

explanatory condition in all but one of the solutions, suggesting that developers may

underestimate the difficulties of gaining access to complementary assets owned by other

parties during their development process. The solution is highly consistent (0.93) and

accounts for three quarters (0.75) of cases that resulted in timely releases.

Table 2 shows the configurations of explanatory conditions associated with the

absence of a timely release. The assumptions used for the counterfactual analysis in this case

are the mirror image of those described above: it was assumed that the absence of resources

allocated to app development, team mobile development experience, team entrepreneurial

experience, competing on owned complementary assets and the presence of competing on

accessed complementary assets would be associated with an absence of timely release.

The analysis produced three solutions. The first of these suggests that

entrepreneurially experienced teams working on utility apps without a focus on execution are

less likely to produce a timely release. A lack of resources combined with limited

development experience, lack of owned complementary assets and a utility app was also

associated with the absence of a timely release, as illustrated in solution 2. Solution 3

suggests that even cases with developer teams experienced in both mobile development and

entrepreneurship may not lead to timely release if they are working on a utility app without a

focus on novelty, and with limited resources. Overall, it appears that a combination of lack of

resources and the development of a utility app is associated with failure to deliver a timely

release. However, the consistency (0.77) and coverage (0.33) of this solution are much lower

than those of the solutions associated with timely release, suggesting that other factors that

are not taken into account in this study are likely to be in play.

User ratings

The explanatory conditions considered in the analysis of the achievement of high user ratings

were the same as those used in the analysis above. The assumptions used for counterfactual

analysis were that the presence of resources allocated to development, team mobile

development experience, and team entrepreneurial experience would be associated with high

ratings, and, conversely, that the absence of these conditions would be associated with the

absence of high ratings.

 The first six columns of Table 3 show the solutions leading to high user ratings, while

the last three columns contains the solutions associated with low user ratings. Solution 1

suggests that high ratings can be achieved by a utility app despite a lack of team mobile

development experience if the app is not competing on novelty, and if the lack of team

mobile development experience is compensated for by either resources of team

entrepreneurial experience. Apps produced by well-resourced and/or experienced teams can

achieve high ratings, despite the absence of a focus on complementary assets or execution as

bases of competitive advantage, as shown by solution 2. Solution 3 suggests that a focus on

both novelty and execution are associated with achieving high ratings for games. The overall

consistency and coverage of this solution are high, at 0.91 and 0.63, respectively.

 Regarding configurations of explanatory conditions associated with low ratings,

solution1 suggests that resources allocated to app development in combination with team

mobile development experience may not be enough to achieve high ratings if the team lacks

entrepreneurial experience. Solutions 2 and 3 suggest that utility apps focused on execution

may not achieve high ratings if resources or development experience are lacking. These

solutions are highly consistent (0.97) but only account for a minority of pathways to poor

ratings, as illustrated by their relatively low coverage (0.32), again suggesting that other,

unaccounted for factors, may be in play.

Downloads

In investigating the factors leading to high weekly downloads, alongside the explanatory

conditions relating to the intended bases of the apps competitive advantage, I considered the

app’s average rating, its membership in the set of games, and its membership in the set of

apps targeting a global market. For the counterfactual analyses, the presence of high user

ratings and targeting global market were assumed to relate to membership in the set of apps

with high downloads, while the absence of these explanatory conditions was assumed to

relate to membership in the set of apps with low downloads.

 The configurations of explanatory conditions associated with high downloads are

presented in the first three columns of table 4. The first solution suggests that games that are

highly rated are likely to be in the set of highly downloaded apps. Solution 2, on the other

hand, suggests that the combination of competing on novelty, competing on execution, and

high user ratings are associated with high downloads for all apps, regardless of their

membership in the set of games. The overall solution is highly consistent (0.95) and accounts

for just over half of highly-downloaded cases, with coverage of 0.56.

 The last six columns of table 4 show the configurations of explanatory conditions

associated with low downloads. Solution 1 suggests that regardless of other explanatory

factors, poorly-rated apps are unlikely to end up in the set of apps that are highly-

downloaded. Solution 2 suggest that apps targeting a narrow geographical area without a

focus on execution are also unlikely to receive many downloads. The consistency and

coverage of these solutions are 0.97 and 0.65, respectively.

Conclusion

The analyses reported above lead to a number of tentative conclusions about developer

strategies in mobile application markets. First, the emphasis that many of the interviewed

developers placed on complementary assets, whether owned or accessed, as a basis of

competitive advantage for their app on the Windows Phone store appears to have been

misplaced. While having owned complementary assets appeared to be a core explanatory

condition in a number of configurations associated with timely release, accessed

complementary assets appears to often be a hindrance. Neither owned nor accessed

complementary assets were core explanatory conditions in configuration associated with

either high user ratings or high downloads. In other words, while having owned

complementary assets may indeed help in the development process, the developer teams

studied here were perhaps guilty of over-estimating the value that app users would gain from

them being part of the app.

 Second, the results suggest that the frequently made distinction between games and

utility apps is well-justified. Utility apps appear to be more likely to be in the set of apps not

achieving timely release, poor ratings, and low downloads, while games that are novel and

well-executed appear to perform well on all outcome measures, regardless of other

explanatory factors.

 Finally, it appears that the absence of one of the causal conditions relating to the

resources and capabilities of the developer team, unless it compensated for by presence of

one or more of the others or by owned complementary assets, is often associated with failure

to achieve either timely release or high user ratings.

 Smartphone application developers face many challenges in competing in a

potentially very lucrative but highly competitive market. Future work should look to evaluate

and further expand on these preliminary findings in order to improve our knowledge of the

strategies that do and do not work in these fascinating and increasingly important competitive

contexts.

References

Adner R & Kapoor R. 2010. Value creation in innovation ecosystems: How the structure of

technological interdependence affects firm performance in new technology generations.

Strategic Management Journal, 31: 306-333.

Boudreau KJ. 2012. Let a thousand flowers bloom? An early look at large numbers of

software app developers and patterns of innovation. Organization Science, 23: 1409-1427.

Casadesus-Masanell R & Yoffie DB. 2007. Wintel: Cooperation and conflict. Management

Science, 53: 584-598.

Eisenmann T. 2007. Managing networked businesses: Course overview for educators. HBS

note no. 807-104.

Eisenmann T, Parker G, & Van Alstyne M. 2011. Platform envelopment. Strategic

Management Journal, 32: 1270-1285.

Fiss PC. 2007. A set-theoretic approach to organizational configurations. Academy of

Management Review, 32(4): 1180-1198.

Fiss PC. 2011. Building better causal theories: A fuzzy set approach to typologies in

organization research. Academy of Management Journal, 54(2): 393-420.

Gawer A & Cusumano MA. 2002. Platform leadership: How Intel, Microsoft, and Cisco

drive industry innovation. Harvard Business School Press, Boston, MA.

Iansiti M & Levein R. 2004. The keystone advantage: What the new dynamics of business

ecosystems mean for strategy, innovation, and sustainability. Harvard Business School Press,

Boston, MA.

Marx A. 2010. Crisp-set qualitative comparative analysis (csQCA) and model specification:

Benchmarks for future csQCA applications. International Journal of Multiple Research

Approaches, 4: 138-158.

Ragin CC, Drass KA, & Davey S. 2006. Fuzzy-Set/Qualitative Comparative Analysis 2.0.

Department of Sociology, University of Arizona: Tucson, AZ.

Ragin CC. 2008. Redesigning social inquiry: Fuzzy sets and beyond. University of Chicago

Press, Chicago, IL.

Redding K & Viterna JS. 1999. Political demands, political opportunities: Explaining the

differential success of left-libertarian parties. Social Forces, 78: 491-510.

Rihoux B & Ragin CC (eds.) 2008. Configurational comparative methods. Qualitative

Comparative Analysis (QCA) and related techniques. Sage, Thousand Oaks and London.

Venkatraman N & Lee CH. 2004. Preferential linkage and network evolution: A conceptual

model and empirical test in the U.S. video game sector. Academy of Management Journal,

47: 876-892.

Yin P-L, Davis JP, & Muzyrya Y. 2014. Entrepreneurial innovation: Killer apps in the iPhone

ecosystem. American Economic Review, 104(5): 255-259.

Table 1: Configurations of explanatory conditions leading to timely release

 Solutions

Causal conditions 1 2 3a 3b 4a 4b 4c 5a 5b 6a 6b 7

Resources
 ● ● ● ● ● ●

Dev. experience
● ● ⊗ ⊗ ⊗ ● ● ●

Ent. experience ⊗ ⊗ ● ● ● ⊗ ●

Novelty
⊗ ⊗ ● ● ● ⊗ ⊗ ⊗ ⊗ ●

Own comp. assets

● ● ● ● ● ⊗ ⊗

Accessed comp. assets ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

Execution ⊗ ● ● ⊗ ● ● ⊗ ⊗ ● ⊗

Game
● ⊗ ● ● ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

Raw coverage 0.07 0.05 0.24 0.19 0.09 0.05 0.07 0.11 0.03 0.19 0.07 0.16

Unique coverage 0.03 0.02 0.12 0.05 0.02 0.02 0.03 0.03 0.00 0.05 0.00 0.03

Consistency 1.00 1.00 1.00 1.00 0.84 1.00 1.00 0.85 1.00 1.00 0.99 0.81

Number of cases 29

Overall solution consistency 0.93

Overall solution coverage 0.75

Key: ●= core causal condition (present). ● = peripheral causal condition (present). ⊗ = core causal condition (absent). ⊗ = peripheral causal

condition (absent).

Table 2: Configurations of explanatory conditions not leading to timely release

 Solutions

Causal conditions 1 2 3

Resources ⊗ ⊗

Dev. experience
 ⊗ ●

Ent. experience

● ●

Novelty ● ● ⊗

Own comp. assets ⊗

Accessed comp. assets

Execution ⊗ ⊗ ●

Game ⊗ ⊗ ⊗

Raw coverage 0.17 0.10 0.13

Unique coverage 0.10 0.10 0.07

Consistency 0.72 1.00 0.80

Number of cases 29

Overall solution consistency 0.77

Overall solution coverage 0.33

Key: ●= core causal condition (present). ● = peripheral causal condition (present). ⊗ =

core causal condition (absent). ⊗ = peripheral causal condition (absent).

Table 3: Configurations of explanatory conditions leading to high ratings and low ratings

 Solutions leading to high ratings Solutions leading to low ratings

Causal conditions 1a 1b 2a 2b 2c 3a 3b 3c 1 2 3

Resources
● ● ● ● ● ⊗

Dev. experience
⊗ ⊗ ● ● ● ● ⊗ ●

Ent. experience ● ● ● ⊗

Novelty
⊗ ⊗ ⊗ ● ● ● ● ● ● ⊗

Own comp. assets ⊗ ● ⊗ ⊗ ⊗ ⊗ ● ● ●

Accessed comp. assets ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

Execution
● ● ⊗ ⊗ ⊗ ● ● ● ⊗ ● ●

Game
⊗ ⊗ ⊗ ⊗ ● ● ● ⊗ ⊗ ⊗

Raw coverage 0.07 0.05 0.10 0.07 0.20 0.22 0.17 0.24 0.08 0.08 0.16

Unique coverage 0.05 0.02 0.05 0.02 0.11 0.05 0.02 0.05 0.08 0.08 0.16

Consistency 1.00 1.00 1.00 1.00 0.85 0.90 0.88 0.91 1.00 1.00 0.94

Number of cases 22 22

Overall solution consistency 0.91 0.97

Overall solution coverage 0.63 0.32

Key: ●= core causal condition (present). ● = peripheral causal condition (present). ⊗ = core causal condition (absent). ⊗ = peripheral causal

condition (absent).

Table 4: Configurations of explanatory conditions leading to high downloads and low downloads

 Solutions leading to high downloads Solutions leading to low downloads

Causal conditions 1 2a 2b 1a 1b 1c 1d 1e 2

Ratings

● ● ● ⊗ ⊗ ⊗ ⊗ ⊗

Global release ● ● ⊗ ⊗ ⊗

Novelty
 ● ● ⊗ ● ⊗ ● ●

Own comp. assets ⊗ ● ● ● ⊗ ● ● ⊗

Accessed comp. assets ⊗ ⊗ ⊗ ● ⊗ ⊗ ⊗ ⊗ ⊗

Execution
 ● ● ⊗ ● ● ● ⊗

Game

● ● ● ● ⊗ ⊗ ⊗

Raw coverage 0.35 0.36 0.25 0.11 0.16 0.16 0.06 0.09 0.06

Unique coverage 0.15 0.08 0.05 0.11 0.16 0.16 0.06 0.09 0.06

Consistency 0.94 1.00 0.98 0.91 1.00 0.98 0.88 1.00 1.00

Number of cases 22 22

Overall solution consistency 0.95 0.97

Overall solution coverage 0.56 0.65

Key: ●= core causal condition (present). ● = peripheral causal condition (present). ⊗ = core causal condition (absent). ⊗ = peripheral causal

condition (absent).

